The Glebe Primary School

'We can and we will'
KS1 Calculation Policy March 2022

Mental and Written calculations

Mission Statement:

At Glebe Primary School, we believe in an ethos that values the whole child. We strive to enable all children to achieve their full potential academically, socially and emotionally.

Introduction:

At Glebe Primary School, children are introduced to the process of calculation through practical, oral, and mental activities. As children begin to understand the underlying ideas, they develop ways of recording to support their thinking. Over time, children learn how to use models and images (such as empty number lines) to support the mental and informal written calculations. As children's mental methods are strengthened and refined, so too are their informal written methods. These methods become more efficient and succinct and lead to efficient written methods that can be used more generally.

The range of methods taught are designed to enable children to:

- Become confident, independent and efficient in their calculations;
- Choose the appropriate operation and methods (from a variety of mental and written methods) rather than rely on formal written methods for all calculations;
- To solve a particular calculation;
- Develop strategies for checking accuracy i.e using the inverse to check their answers.

At whatever stage in their learning, and whatever method is being used, it must still be underpinned by a secure and appropriate knowledge of number facts, along with the mental skills that are needed to carry out the process and judge if was successful.

CPA Approach (Concrete, Pictorial, Abstract)

Concepts should follow the CPA approach where possible. At Glebe Primary School, we initiate the teaching of new concepts through the CPA approach from the Early Years and this is continued throughout the school to support and stretch pupils where appropriate. We aim to allow children as much time as is needed on each of the aspects of the CPA approach and it is understood that children must not be moved on from one aspect to another without a full grasp of the previous one.

INTENT

The overall aim is that when children leave primary school they:

- Have a secure knowledge of number facts and a good understanding of the four operations;
- Are able to use this knowledge and understanding to carry out calculations mentally and apply general strategies to special cases involving bigger numbers;
- Make use of diagrams and informal notes to help record steps and multi-step answers; when using mental methods that generate more information than can be kept in their heads.
- Have an efficient, reliable, compact written method, for each operation, that children can apply with confidence when undertaking calculations that they cannot carry out mentally.

The range of methods taught are designed to enable children to:

- Become confident, independent and efficient in their calculations;
- Choose the appropriate operation and methods (from a variety of mental and written methods) rather than rely on formal written methods for all calculations;
- To solve a particular calculation;
- Develop strategies for checking accuracy i.e using the inverse to check their answers.

IMPLEMENTATION

At Glebe Primary School, we do not follow a specific mathematics scheme or framework. Instead, we use resources from well-known mathematical leaders, such as White Rose Maths, to support our teaching. Our teachers use their judgement and skills to source resources that have been matched carefully to the abilities of the children, as well as resources designed to stretch and challenge all abilities.

To add successfully by the end of KS1, children need to be able to:

- Know the vocabulary which indicates addition: sum, total, greater, more etc.
- Recall addition pairs to 10 \& 100 (such as $2+8=10$ \& $20+80=100$);
- To add three one-digit numbers together, mentally or otherwise;
- Add multiples of 10 (such as $60+20$) using related addition facts ($6+2$) and their knowledge of place value;
- Partition two-digit \& three-digit numbers, into multiples of 1, 10 and 100 in different ways, e.g. 45 can be partitioned into $40+5 ; 30+15$; etc.

To subtract successfully by the end of KS1, children must be able to:

- Know the vocabulary which indicates subtraction: less, fewer, difference etc.
- Recall all addition and subtraction facts to 20 (such as $12+8=20 ; 20-8=12$);
- Subtract multiples of 10 (such as $50-30$) using related subtraction facts (5-3) and their knowledge of place value;
- Partition two-digit and three-digit numbers into $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s , in a number of different ways (such as partition 74 into $70+4$ or $60+14$)

To multiply successfully by the end of KS1, children need to:

- Recall all multiplication facts from the 2,5 and 10 times tables;
- Know the vocabulary which indicates multiplication: multiple, multiply, lots of, double, triple etc;
- Partition numbers into multiples of $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s ;
- Work out products (such as $70 \times 5,70 \times 50,700 \times 5$) using the related fact (7×5) and their knowledge of place value;
- Add two or more single digits mentally;
- Recognise the multiplication is repeated addition;
- Add multiples of 10 or of 100 using related addition facts and their knowledge of place value;

To divide successfully by the end of KS1, children need to be able to:

- Understand the vocabulary which indicates division: share, groups, half, quarter etc;
- Partition two-digit and three-digit numbers into multiples of $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s .
- Recall multiplication and division facts from the 2,5 and 10 times tables;
- Recognise multiples of 2,5 and 10 , and divide these by a single number using their knowledge of multiplication and division facts;
- Know how to find a remainder, working mentally for example to find the remainder when 48 is divided by 5 .
- Understand that multiplication and division are inverse operations.
- Understand division as repeated subtraction

Reviewed: March 2022

To be reviewed: March 2024

CALCULATION PROGRESSION CHART

	Addition	Subtraction	Multiplication	Division
Year 1	- Using concrete objects and other models and images to understand addition.	- Using concrete objects and other models and images to understand subtraction.	- Using concrete objects to understand multiplication as "lots of" and as arrays (with teacher support).	- Using concrete objects to understand division as sharing and grouping.
Year 2	- Using concrete objects and models and images including number lines for $\mathbf{U}+1 \mathrm{~s}$, TU+10s, U+U, TU+U (see mental calculation for further exemplification). - Using Base 10 apparatus for TU + TU (beginning to set out in columns and recorded as expanded column addition).	- Using concrete objects and other models and images including number lines for \mathbf{U} U, TU-U, TU - 10s (see mental calculation in the policy for further exemplification)	- Using concrete objects and other models and images including arrays and number lines to multiply $\mathbf{U x U}$ and understand its relation to scaling including doubling.	- Using concrete objects and other models and images including arrays and number lines to embed understanding of division as "grouping" and "sharing" and relate halving to dividing by 2.

Progression of Challenge-in Calculations

Choice of method could be mental or written (number line, partitioning etc) based on the calculation.	Choice of method could be mental or written (number line, partitioning etc) based on the calculation.	Mental methods to be used where applicable. Arrays, number lines etc to be used as written methods)	Mental methods to be used where applicable. Sharing, grouping etc to be used as written methods.
$\begin{aligned} & U+U \text { - below } 10(5+4) \\ & U+U-\text { crossing } \\ & \text { tens boundary }(5+ \\ & \text { 7) } \end{aligned}$	U-U below $10(5-4)$ TU - U below 20; not crossing tens boundary $(15-4)$	Multiplication of 2,5 and $\underline{10}$ UxU TU XU (up to 12)	Division where 2, 35 or 10 is the dividend $U \div U$
TU + U - below $20(15+4)$ TU + U - crossing tens boundary ($35+$ 8)	TU - U crossing tens boundary (15-8; 35- 8) TU - TU within tens boundary (37-14)	Related to 2, 5 and 10 division facts	$T U \div U$ Related to 2, 5 and 10 division facts
TU + TU - within tens boundary (23 + 34)	TU - TU crossing tens boundary (46 (-28)		
TU + TU - crossing tens boundary ($26+$ 48)	TU - TU crossing hundreds boundary (105-17)		
TU + TU - crossing hundreds boundary (78 + 34)	HTU - TU within tens boundary (138-25)		
HTU + TU - within	HTU - TU crossing tnnchnimdnmi/?		

ADDITION AND SUBTRACTION	
Year 1	

Combing 2 sets of objects into one group and counting practically.

Year 2

Number Bonds
- recall and use addition and subtraction facts to 20

Mental Calculations	Comparing Numbers
- add and subtract numbers using concrete	\bulletcompare and order numbers from 0 up to 100; use ob, $>$ and $=$ signs
objects, pictorial representations, andmentally, including.	

oTU + 1; TU + 10; TU - 1; TU -10

- TU + U; TU -U
- TU + TU (begin with largest number first e.g. change $23+36$ to $36+23$ and then calculate)
$o U+U+U$ (use number bonds to add first e.g. $3+5+7=10+5=15$)
- Use known facts to and derive related facts up to 100 including:
onumber pairs to $\mathbf{1 0 0}$ (If $3+7=10$ then $30+$ $70=100$)
olf $7+5=12$ then $37+5=42$
olf $15+10=25$ then $15+9=24$
olf $35-10=25$ then $35-9=26$
- Use knowledge of inverse to find missing numbers

$$
\text { oE.g. } \quad \square-7=22
$$

- show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot.
- read, write and interpret mathematical statements involvingaddition (+), subtraction (-) andequals (=)signs (appears also in Written Calculation).

Written Calculations	Identifying, Representing and Estimating Numbers
- read, write and interpret mathematical statements involving addition(+), subtraction(-) andequals (=)signs (appears also in Mental Calculation)	- identify, represent and estimate numbers using different representations, including the number line.
Inverse Operations, Estimating and Checking	Reading and Writing Numbers
- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	- read and write numbers to at least 100 in numerals and in words.
Problem Solving	Understanding Place Value
- solve problems with addition and subtraction: - using concrete objects and pictorial representations, including those involving numbers, quantities and measures. applyingtheirincreasingknowledge of mental and written methods. solve simple problems in a practical context involving addition/subtraction of money of the same unit, includinggiving change (copied from Measurement).	- recognise the place value of each digit in a twodigit number (tens, ones).

SUBTRACTION - Year 2	
	Imagine one less spot
(1) (1) (1) (1) (2) (1) (1) (1) (1) (1) (1) (1) (1) (1) Which line has most money? How much more?	
00000000000000 The difference between II and 14 is 3. 00000000000 14 $14-11=3$ $11+\square=14$	The difference is?
54 p in the purse. Take 10p out, another IOp and so on	 76...66, 56, 46 $96-10=86$ $86-10=76$ etc. $76-30=46$
Counting back (empty number line): 92-15 =	Finding the difference (counting on - empty number line) $84-56=$ \square $56+\square=84$

MULTIPLICATION AND DIVISION
Mear 1
Multiplication and Division facts
\bullet count in multiples of twos, fives and tens (copied from Number and Place Value).
Mental Calculations
\bullet count in multiples of twos, fives and tens (copied from Number and Place Value).
Problem Solving
• solve one-step problems involving multiplicationand division, by calculating the answer using
concrete objects, pictorial representations and arrays with the support of the teacher.

MULTIPLICATION - Year 1				
	5 groups of 2 5 pairs			6 lots of 5
4 lots of 2 or 2 lots of 4	准 $\|$5 lots of 2 or 2 lots of 5			

There are 3 sweets in one bag.
How many sweets are in 5 bags
altogether?

DIVISION - Year 1

Solve problems involving both sharing and grouping:

Sharing 12 cakes equally between 3
How many groups of 3 are in 15 ?

How many groups of 4 can be made with 12 stars?

Grouping:

MULTIPLICATION AND DIVISION

Year 2

Multiplication and Division facts

- count in steps of 2, 3, and 5 from $\mathbf{0}$, and in tens from any number, forward or backward (copied from Number and Place Value).
- recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Know that doubling is multiplying by 2 and halving is divided by 2.
- I know significant doubles (eg $10+10,50+50=, 50 p+50 p=$) involving doubling multiples of 5 up to 50.

Mental Calculations

- show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Find a half, a third and a quarter of an amount.

Written Calculations

- calculate mathematical statementsformultiplication and division within the multiplicationtables and write them using the multiplication (\times), division (\div) and equals (=) signs

Inverse Operations, Estimating and Checking

- Understand that division is the inverse of multiplication.

Problem Solving

- solve problems involving multiplication and division, using: materials, arrays, repeated addition and multiplication and division facts, including problems in contexts.

MULTIPLICATION - Year 2

This represents $12 \div 3$, posed as how many groups of 3 are in 12?

Introducing that division is
the inverse of
multiplication
Pupils should also show that the same array can represent $12 \div 4=$ 3 if grouped horizontally.

Know and understand sharing and grouping:

6 sweets shared between 2 people, how many do they each get?
Grouping

There are 6 sweets, how many people can have 2 sweets each?

Children should be taught to recognise whether problems require sharing or grouping.

Grouping using a number line: Children to see the link between multiplication and division and begin to recall division facts.

Children understand that halving means "divided by 2".
Complete the stem sentences.

I have ___ cubes altogether. There are __ in each group. There are \qquad groups.
$\square \div \square=\square$

I have 24 p .
I divide it equally between 2 friends.
How much will they get each?
I have 24 p in $2 p$ coins.
How many $2 p$ coins do I have?
Consider the two questions above.
What is the same and what is different?

