Glebe Primary School

'We can and we will' Calculation Policy
 UKS2

Mental and Written calculations

Contents:

Mission Statement \& Introduction page 3Knowledge children need for the 4 operationspages 3-4
Appendices:
Appendix 1- Calculation Progression Chart page 5
Appendix 2- Progression of Challenge in Calculation page 6
Appendix 3-Addition \& Subtraction - Year 4pages 7-8
Appendix 4-Addition \& Subtraction - Year 5 pages 9-10
Appendix 5-Addition \& Subtraction - Year 6 pages 11-12
Appendix 6- Multiplication \& Division - Year 4 pages 13-15Appendix 7-Multiplication \& Division - Year 5pages 16-18Appendix 8- Multiplication \& Division - Year 6pages 19-21

Mission Statement:

At Glebe School we believe in an ethos that values the whole child. We strive to enable all children to achieve their full potential academically, socially and emotionally.

Introduction:

At Glebe Primary School, children are introduced to the process of calculation through practical, oral, and mental activities. As children begin to understand the underlying ideas, they develop ways of recording to support their thinking. Over time, children learn how to use models and images (such as empty number lines) to support the mental and informal written calculations. As children's mental methods are strengthened and refined, so too are their informal written methods. These methods become more efficient and succinct and lead to efficient written methods that can be used more generally.

The range of methods taught are designed to enable children to:

- Become confident, independent and efficient in their calculations;
- Choose the appropriate operation and methods (from a variety of mental and written methods) rather than rely on formal written methods for all calculations;
- To solve a particular calculation;
- Develop strategies for checking accuracy i.e using the inverse to check their answers.

At whatever stage in their learning, and whatever method is being used, it must still be underpinned by a secure and appropriate knowledge of number facts, along with the mental skills that are needed to carry out the process and judge if was successful.

The overall aim is that when children leave primary school they:

- Have a secure knowledge of number facts and a good understanding of the four operations;
- Are able to use this knowledge and understanding to carry out calculations mentally and apply general strategies to special cases involving bigger numbers;
- Make use of diagrams and informal notes to help record steps and multi-step answers; when using mental methods, that generate more information than can be kept in their heads.
- Have an efficient, reliable, compact written method, for each operation, that children can apply with confidence when undertaking calculations that they cannot carry out mentally.

To add successfully, children need to be able to:

- Know the vocabulary which indicates addition: sum, total, greater, more etc.
- Recall addition pairs to 10 \& 100 (such as $2+8=10$ \& $20+80=100$);
- To add mentally a series of numbers (such as $5+8+4$);
- Add multiples of 10 (such as $60+70$) or of $100(600+700)$ using related addition facts ($6+7$) and their knowledge of place value;
- Partition two-digit \& three-digit numbers, into multiples of 1, 10 and 100 in different ways.

To subtract successfully, children must be able to:

- Know the vocabulary which indicates subtraction: less, fewer, difference etc.
- Recall all addition and subtraction facts to 20 (such as $12+8=20$);
- Subtract multiples of 10 (such as $160-70$) using related subtraction facts (16-7) and their knowledge of place value;
- Partition two-digit and three-digit numbers into $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s , in a number of different ways (such as partition 74 into $70+4$ or $60+14$)

To multiply successfully, children need to:

- Recall all multiplication facts to 12×12;
- Know the vocabulary which indicates multiplication: multiple, multiply, lots of, double, triple etc;
- Partition numbers into multiples of $1 \mathrm{~s}, 10 \mathrm{~s}$ and 100 s ;
- Work out products (such as $70 \times 5,70 \times 50,700 \times 5$) using the related fact (7×5) and their knowledge of place value;
- Add two or more single digits mentally;
- Recognise that multiplication is repeated addition;
- Add multiples of 10 or of 100 using related addition facts and their knowledge of place value;
- Add combination of decimal or larger whole numbers using formal written methods (the column method).

To divide successfully, children need to be able to:

- Understand the vocabulary which indicates division: share, groups, quotient, half, quarter etc;
- Understand the vocabulary of division (such as $18 \div 3=618$ is the dividend, the 3 is the divisor \& the 6 is quotient;
- Partition two-digit and three-digit numbers into multiples of $1 \mathrm{~s}, 10$ s and 100 s .
- Recall multiplication and division facts 12×12;
- Recognise multiples of one-digit numbers and divide multiples of 10 or 100 by a single numbers using their knowledge of division facts;
- Know how to find a remainder, working mentally for example to find the remainder when 48 is divided by 5 .
- Understand that multiplication and division are inverse operations;
- Understand division as repeated subtraction.

Reviewed: January 2022

To be reviewed: January 2024

CALCULATION PROGRESSION CHART Appendix 1

	Addition	Subtraction	Multiplication	Division
Year 1	- Using concrete objects and other models and images to understand addition.	- Using concrete objects and other models and images to understand subtraction.	- Using concrete objects to understand multiplication as "lots of" and as arrays (with teacher support).	- Using concrete objects to understand division as sharing and grouping.
Year 2	- Using concrete objects and models and images including number lines for U+1s, TU+10s, U+U, TU+U (see mental calculation for further exemplification). - Using Base 10 apparatus for TU + TU (beginning to set out in columns and recorded as expanded column addition).	- Using concrete objects and other models and images including number lines for \mathbf{U} U, TU-U, TU-10s (see mental calculation in the policy for further exemplification)	- Using concrete objects and other models and images including arrays and number lines to multiply $\mathbf{U x U}$ and understand its relation to scaling including doubling.	- Using concrete objects and other models and images including arrays and number lines to embed understanding of division as "grouping" and "sharing" and relate halving to dividing by 2.
Children continue to learn using concrete resources and models and images in Lower and Upper KS2 to help develop conceptual understanding				
Year 3	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Expanded column addition for TU + TU, HTU + TU and HTU + HTU where necessary.	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Expanded column subtraction with decomposition for HTU TU and HTU - HTU where necessary.	- Using concrete objects and other models and images including arrays and number lines to multiply and its relation to scaling. - Consolidation of mental methods including using knowledge of number facts to derive related facts of $T U \mathrm{X}$: If $2 \times 3=6$ then $2 \times 30=60$.	- Consolidation of mental methods including using knowledge of number facts to derive related facts of $\mathrm{TU} \div \mathrm{U}$: For example, using $3 \times 2=6$ for $30 \times 2=60$ and $6 \div 3=2$, and $60 \div 3=20$. - Use number lines to calculate TU $\div \mathbf{U}$ where appropriate (including remainders) by chunking on in groups of U.
Year 4	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Formal- Compact column addition up to 4 digits.	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Expanded column subtraction with decomposition up to 4 digits.	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Grid multiplication (using arrays as starting point) for HTU x U and TU xU. - Formal- Short multiplication for multiplying numbers up to 4 digits with U .	- Consolidation of mental methods (see mental calculation in the policy for further exemplification) - Use number lines to calculate $\mathrm{TU} \div \mathrm{U}$ or $\mathrm{HTU} \div \mathrm{U}$ using chunks of 10 (chunking on using repeated addition).
Year 5	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Formal- Compact column addition including: - Numbers up to 5 digits - Same number of decimal places - Different number of decimal places.	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Formal- Compact column subtraction with decomposition for subtracting whole numbers and numbers with the same decimal places.	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Consolidate grid method. - Consolidate formal short multiplication.	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Consolidate using number lines to chunk groups on a number line for TU $\div \mathrm{U}$ \& now for HTU \div TU- chunking as repeated subtraction. Formal - Short division for TU $\div \mathbf{U}$ (Bus stop method) - Calculations with no "carrying" (e.g. $96 \div 3$) - Calculations with "carrying" (e.g. $72 \div 3$) - Calculations with "carrying" and remainders (e.g. $5309 \div 8$) - Remainders as fractions.
Year 6	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Formal- Compact column addition to add several numbers of increasing complexity including numbers with different number of decimal places.	Consolidation of mental methods (see mental calculation in the policy for further exemplification). Formal- Compact column subtraction with decomposition to subtract numbers of increasing complexity including numbers with different number of decimal places.	- Consolidation of mental methods (see mental calculation in the policy for further exemplification). - Formal- Short multiplication to multiply numbers with up to 2 decimal places by U . - Long multiplication for multiplying numbers up to 4 digits and numbers up to 2 decimal places by TU.	- Consolidation of mental methods (see mental calculation in the policy for further exemplification) - Formal method-Consolidate short division bus stop method, with and without remainders as whole numbers, fractions, decimals. - Formal Long division with TU as divisors.

Progression of Challenge-in Calculations Appendix 2

Addition	Subtraction	Multiplication	Division
Choice of method could be mental or written (column addition) based on the calculation.	Choice of method could be mental or written (decomposition) based on the calculation.	Mental methods to be used where applicable.	Mental methods to be used where applicable.
$\mathrm{U}+\mathrm{U}$ - below $10(5+4)$	U - U below 10 (5-4)	ShortMultiplication	ShortDivision
$\mathrm{U}+\mathrm{U}$ - crossing tens boundary (5+7)	TU - U below 20; not crossing tens boundary (15- 4)	Numbers that are 2 digits or over multiplied by U (34×7; $237 \times 6 ; 5673 \times 8$ etc.)	Numbers that are 2 digits, or over, divided by U with or without remainders ($78 \div 6$;
TU + U - below $20(15+4)$			$126 \div 7$; $674 \div 8 ; 5642 \div 3$ etc.)
$T U+U-$ crossing tens boundary ($35+8$)	boundary (15-8; 35-8)	decimal places multiplied by U $\text { (} 34.7 \times 6 ; 65.24 \times 8 \text { etc.) }$	Numbers that have up to 2
TU + TU - within tens	TU - TU within tens boundary (37-14)		decimal places divided by U $(34.2 \div 6 ; 65.28 \div 8 \text { etc. })$
boundary (23+34)		Long Multiplication	
TU + TU - crossing tens boundary $(26+48)$	TU - TU crossing tens boundary (46-28)	Numbers over 2 digits multiplied by TU (34×45;	Long Division
TU + TU - crossing hundreds	TU - TU crossing hundreds boundary (105-17)	$456 \times 23 ; 5643 \times 34 \mathrm{etc}$.)	Numbers that are 3 digits or over divided by TU with or
boundary $(78+34)$		Numbers that have up to 2 decimal places (4.7×16;	without remainders ($245 \div 21$; $3654 \div 35$ etc.)
HTU + TU - within tens boundary (134+25)	boundary (138-25)	15.24×28 etc.)	
HTU + TU - crossing tens boundary (235 +68)	HTU - TU crossing tens boundary (265-58)		
HTU + TU - crossing	HTU - TU crossing hundreds and tens boundary (265-78)		
35)	HTU - HTU not crossing tens boundary (365-123)		
HTU + TU - crossing tens and hundreds boundary (488 $+47)$	HTU - HTU crossing tens and hundreds boundary (414 -126)		
HTU + HTU - crossing tens boundary ($368+123$)	Continue as above with numbers that are 4 digits or		
HTU + HTU - crossing tens and hundreds boundary (387 +477)	over.		
Introduce decimal numbers where appropriate (see policy).	Introduce decimal numbers where appropriate (see policy).		
- Add numbers with same decimal places	- Subtract numbers with same decimal places		
- Add numbers with different decimal places	- Subtract numbers with differentdecimal places		

ADDITION AND SUB	TRACTION Appendix 3 ear 4
Number Facts	Counting
- recall addition and subtraction facts to 20 fluently (Year 1). - recall number pairs that total 100 (Year 2). - Recall number pairs that total $\mathbf{1 0 0 0}$ (multiples of 100) (Year3).	- count backwards through zero to include negative numbers. - count in multiples of $6,7,9,25$ and 1000 . - find $\mathbf{1 0 0 0}$ more or less than a given number
Mental Calculations	Comparing Numbers
- Consolidate: HTU + 1; HTU + 10; HTU + 100; HTU - 1; HTU -10; HTU - 100 - Use known facts to and derive related facts up to 1000 including: - If $7+5=12$ then $397+5=402$ (crossing 100s boundary) - If $95+10=105$ then $95+9=104$ (crossing 100s boundary) - If $205-10=195$ then $205-9=196$ (crossing 100s boundary) - Use knowledge of doubles to derive related facts: o $23+24=47$ because $23+23=46$ and $46+1=47$ - Find the difference between two numbers that are close to each other by counting on/ using knowledge of inverse: $\mathrm{E} . \mathrm{g}$. What is $67-58$? $67-58=9 \text { because } 58+9=67$ - Use knowledge of inverse to find missing numbers. - Round to nearest pound and compensate: $£ 3.99+£ 3.99=£ 4+£ 4-2 p=£ 7.98$ - Add fractions, of the same denominator, when the answer will be greater than 1 (a mixed number). - Subtract a fraction from 1.	- order and compare numbers beyond 1000. - compare numbers with the same number of decimal places up to two decimal places (copied from Fractions). - Use strips of paper to show equivalent fractions.
Written Calculations	Identifying, Representing and Estimating Numbers
- add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and expanded column subtraction where appropriate.	- identify, represent and estimate numbers using different representations. - Investigate fractions greater than 1.
Inverse Operations, Estimating and Checking Answers	Reading and Writing Numbers
- estimate and use inverse operations to check answers to a calculation.	- read Roman numerals to $\mathbf{1 0 0}$ (I to C) and know that over time, the numeral system changed to include the concept of zero and place value.
Problem Solving	Understanding Place Value
- solveadditionandsubtractiontwo-step problems in contexts, deciding which operations and methods to use and why	- recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) - find the effect of dividing a one-ortwo-digit number by 10 and $\mathbf{1 0 0}$, identifying the value of the digits in the answer as units, tenths and hundredths (copied from Fractions).
	Rounding
	- round any number to the nearest $\mathbf{1 0} \mathbf{1 0 0}$ or 1000. - round decimals with one decimal place to the nearest whole number (copied from Fractions).

ADDITION - Year 4

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)

SUBTRACTION - Year 4

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)
Continue expanded subtraction method with up to 4 digit numbers:
Children begin to estimate their

$2754-1562=1192$
$2000+6000+50+4$
$-1000+500+60+2$
$1000+100+90+2$

Use and apply this method in the context of money and measures as well.

Fractions:

Which model is correct? Explain why.
Can you write a number story for each model?

How many different ways can you find to solve the calculation?

$$
\begin{aligned}
& \frac{\square}{7}-\frac{3}{7}=\frac{\square}{7}+\frac{\square}{7} \\
& \frac{\square}{7}-\frac{3}{7}=\frac{\square}{7}-\frac{\square}{7}
\end{aligned}
$$

Jack uses a bar model to subtract fractions.

Use Jack's method to calculate.
$3-\frac{3}{4}=\quad 3-\frac{3}{8}=\quad 3-\frac{7}{8}=3-\frac{15}{8}=$

Dexter uses a number line to find the difference between 2 and $\frac{6}{9}$

Use a number line to find the difference between:
2 and $\frac{2}{3} \quad 2$ and $\frac{2}{5} \quad \frac{2}{5}$ and 4

Dora is subtracting a fraction from a whole.

Can you spot her mistake?
What should the answer be?

Year 5

Number Facts

- recall addition and subtraction facts to 20 fluently (Year 1).

Counting

- interpret negative numbers in context, count forwards and backwards with positive and
- number pairs that total 100 (Year 2).
- number pairs that total 1000 (multiples of negativewhole numbers, including through zero. 100)(Year3).
- number pairs that total 1000 (multiples of 10).

Mental Calculations

Comparing Numbers

- add and subtract numbers mentally with increasinglylarge numbers and consolidate from previousyearsincludingmissing number questions.
- read, write, order and compare numbers to at
add decimals, with the same or a different number of digit (appears also in Reading and Writing decimal places, knowledge of whole numbers:

Compare \& order positive \& negative numbers $6.5+2.7=9.2$ because $65+27=92$

- Compare decimal numbers with different numbers of decimal places.
- subtract decimals, with the same number of decimal
- Compare \& order fractions less than 1. places, knowledge of whole numbers:
- Compare and order fractions greater than 1. $6.5-2.7=3.8$ because 65-27=38
- Convert improper fractions to mixed numbers
- round to nearest pound and compensate: \& vice versa.
$£ 3.98+£ 3.98+£ 3.98=£ 4+£ 4+£ 4-6 p=£ 11.94$
- add three or more fractions.
- add and subtract fractions which have different denominators.
- add and subtract mixed numbers.
Written Calculations \quad Identifying, Representing and Estimating
- add and subtract whole numbers with more than4
- Consolidate work from before.
digits, includingusing formalwritten methods
- Can identify \& write improper fractions and mixed (columnar addition and subtraction). numbers (such as $16 / 5$ or $31 / 5$).
- add decimals, with the same or a different number of decimal places, knowledge of whole numbers:
- subtract decimals, with the same number of decimal places, knowledge of whole numbers.

Inverse Operations, Estimating and Checking
 \section*{Answers}

- use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- As before, use the inverse to check own answers where appropriate.
- Use different methods, of the same operation, to check own answers or that of a peer.

Problem Solving

- solveaddition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why.

Reading and Writing Numbers

- read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit.
- read Roman numerals to 1000 (M) and recognise years written in Roman numerals.
- Can identify \& write improper fractions and mixed numbers.

Understanding Place Value

- read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit (appears also in Reading and Writing Numbers).
- recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents.

Rounding

- round any number up to 1000000 to the nearest 10, 100, 1000,10000 and 100000.
- round decimals with two decimal places to the nearest whole number and to one decimal place.

ADDITION - Year 5

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)

Numbers exceeding4digits: $\begin{aligned} & 23,481+1362= \\ & \text { Estimation: } 24,000+1000=25,000 \end{aligned}$	Same number of decimal places: $£ 23.59+£ 7.55=$ Estimation: $£ 24+£ 8=£ 32$	Then, different number of decimal places: $19.01+3.65+0.7=$ Estimation: $20+4+1=25$
23.481		
+ 1362	$E 23 \cdot 59$	19.01
24843	+ ¢ 7. 55	3.65
	£31.14	$\begin{array}{r} 0 \cdot 70 \\ \hline 23 \cdot 36 \end{array}$

Use and apply this method in the context of money and measures as well.
Fractions:

How many different ways can you
balance the equation?

$$
\frac{5}{9}+\frac{\square}{9}=\frac{8}{9}+\frac{\square}{9} \frac{\square}{\frac{1}{4}+\frac{3}{8}=\frac{2}{8}+\frac{3}{8}=\frac{5}{8}}
$$

Rosie is using a bar model to solve $\frac{1}{4}+\frac{3}{8}$

Jack has added 3 fractions together to get an answer of $\frac{17}{18}$

पायायायायाय

What 3 fractions could he have added?

Can you find more than one answer?

Eva is attempting to answer:
$\frac{3}{5}+\frac{1}{10}+\frac{3}{20}$

Do you agree with Eva? Explain why.

SUBTRACTION - Year 5

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)
Decomposition method:

2754-1532 =
Estimation: 2800-1500=1300

Decomposition method:
Increase in complexity:
$31,056-2,128=$
Estimation: 31,000-2000 $=29,000$

Decomposition method: Begin to use decimals:
$7169-372.5=$
Estimation: 7000-400=6600

Use and apply this method in the context of money and measures as well.
Fractions:

Use this method to find the difference between:
$\frac{3}{4}$ and $\frac{5}{12} \quad \frac{19}{15}$ and $\frac{3}{5} \quad \frac{20}{9}$ and $\frac{4}{3}$

Use this method to help you solve: $2 \frac{3}{5}-\frac{3}{10} \quad 1 \frac{2}{3}-\frac{1}{6} \quad 1 \frac{5}{6}-\frac{7}{12}$

Which subtraction is the odd one out?

Explain why.

Amir is attempting to solve $2 \frac{5}{14}-\frac{2}{7}$
Here is his working out:

Do you agree with Amir? Explain your answer.

| ADDITION AND SUBTRACTION Appendix 5 | |
| :--- | :--- |$|$| Year 6 | |
| :--- | :--- |

ADDITION - Year 6

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)

| Adding several numbers of increasing | $81,059+3668+15,301+20,551=$ |
| :--- | :--- | complexity:

$23.361+9.08+59.77+1.3=$
Estimation: $25+10+60+1=96$

$81,059+3668+15,301+20,551=$
Estimation: $80,000+5000+15,000+20,000=120,000$

Fractions:

Whitney is calculating $\frac{5}{8}+\frac{3}{16}$
She finds the lowest common multiple of 8 and 16 to find a common denominator
LCM of 8 and 16 is $16 \quad \frac{5}{8}=\frac{10}{16} \quad \frac{10}{16}+\frac{3}{16}=\frac{13}{16}$
Use this method to calculate:
$\frac{1}{3}+\frac{2}{9}=\frac{3}{7}+\frac{7}{21}=\quad \frac{8}{15}+\frac{1}{5}=\frac{3}{16}+\frac{3}{8}+\frac{1}{4}=$

Fill in the boxes to make the calculation correct.

Use the same digit in both boxes to complete the calculation.
Is there more than one way to do it?

SUBTRACTION - Year 6

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)

MULTIPLICATION - Year 4

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)

- Children know that the digits move to the left when a number is

Which representation does not show multiplying by 100 ? Explain your answer
$3 \times=0$ ones $=3$

Children use mental strategies to find products and missing numbers.

Use your knowledge of the 6 times table to complete the missing values?

$$
\begin{array}{lll}
6 \times 2=- & -\times 6=12 & 6 \times 2 \times 10=- \\
-\times 20=120 & 20 \times-=120 & 6 \times 2 \times \ldots=1,200 \\
6 \times-=1,200 & 200 \times 6=- & 10 \times \ldots \times 6=120
\end{array}
$$

I am thinking of 2 numbers where the sum of the numbers is 15 and the product is 54

What are my numbers?
Think of your own problem for a friend to solve?

Children use mental methods to multiply three one-digit numbers together using the "associate law"(it
doesn't matter how we group the numbers).
Choose three digit cards.
Arrange them in the calculation.

How many different calculations can you
make using your three digit cards?
Which order do you find it the most efficient to calculate the product?
How have you grouped the numbers?
\qquad
Make the target number of 84 using three of the digits below.

Multiply the remaining three digits together, what is the product of the three numbers?

Is the product smaller or larger than 84 ?
Can you complete this problem in more than one way?

Children then move on to using grid method for multiplying two and three-digit numbers by one

$14 \times 6=$

Estimation: $10 \times 6=60$

x	10	4
6	60	24

$60+24=84$
234×6
Estimation: $200 \times 6=1200$

x	200	30	4
6	$\mathbf{1 2 0 0}$	$\mathbf{1 8 0}$	$\mathbf{2 4}$

Short multiplication for multiplying by a single digit

x	300	20	7
4	1200	80	28

$200+180+24=1404$ using column addition if necessary

1404
1200 24

1 1200
$\begin{array}{r}80 \\ 28 \\ \hline\end{array}$
1308

DIVISION - Year 4

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)
Children use mental strategies to find products and missing numbers.
Children know that the digits move to the right when a number is divided by 10 and 100.
Eva and Whitney are dividing numbers by Use $<,>$ or $=$ to make each statement correct.
10 and 100
They both start with the same 4-digit number.

They give some clues about their answer.

$$
\begin{array}{r}
3,600 \div 10 \\
2,700 \div 100 \\
4,200 \div 100
\end{array}
$$

$3,600 \div 100$
$270 \div 10$
$430 \div 10$

What number did they both start with?
Who divided by what?

$$
\begin{aligned}
& 170 \div 10=_- \\
& -20 \times 10=3, _00 \\
& 1,8 _0 \div 10=1 _6 \\
& -9 \times 100=5, _00 \\
& 6 _=6,400 \div 100
\end{aligned}
$$

Children begin to chunk on a number line: (2 or 3 digit number by a 1 digit number)
$96 \div 3=32$

Children learn that a factor is a number which divides into another perfectly and can identify factor pairs which, when multiplied together, make the target number.

Draw your own factor bugs for 16, 48, 56 and 35

Is Tommy correct?
Use arrays to explain your answer.

How many other numbers can you find that are equal to the sum of their factors?
Which numbers are less than the sum of their factors?
Which numbers are greater than the sum of their factors?

Fractions:

Children find fractions of amounts, when the numerator is greater than 1 and apply this to more complex problems.

The school kitchen needs to buy carrots for lunch.
A large bag has 200 carrots and a medium bag has $\frac{3}{5}$ of a large bag.
Mrs Rose says,
I need 150 carrots so I will have to buy a large bag.

Is Mrs Rose correct? Explain your reasoning.

These three squares are $\frac{1}{4}$ of a whole shape.

True or False?

$$
\text { To find } \frac{3}{8} \text { of a }
$$

$$
\text { number, divide by } 3
$$

$$
\text { and multiply by } 8
$$

Convince me.
How many different shapes can you draw that could be the complete shape?

Jack has a bottle of lemonade.
He has one-fifth left in the bottle.
There are 150 ml left.
How much lemonade was in the bottle when it was full?

MULTIPLICATION AND DIVISION Appendix 7

Year 5

Multiplication and Division facts

- count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000 (copied from Number and Place Value)

Mental Calculations

- multiply and divide numbers mentally drawing upon known facts-including decimals:

$$
\begin{aligned}
& o 0.6 \times 7=4.2 \text { because } 6 \times 7=42 \\
& o 3.5 \div 5=0.7 \text { because } 35 \div 5=7
\end{aligned}
$$

- multiply and divide whole numbers, and those involving decimals ,by 10, 100 and 1000.
- Know that TU $\times 5$ is TU $\times 10$ and then halved. $(18 \times 5=(18 \times 10) \div 2)$
- Know that TU $\times 9$ is TU $\times 10$ then subtract TU $(18 \times 9=(18 \times 10)-18=162)$
- Round and compensate for near pounds ($£ 4.99 \times 3=£ 5 \times 3-3 p=£ 14.97$)
- Use knowledge of doubles and halves of whole numbers to find doubles and halves of decimal numbers $(2.3+2.3=4.6$ because $23+23=46$; Half of 5.8 is 2.7 because half of 58 is 27).
- Use times tables/ knowledge of factors and multiples to find equivalent fractions.
- Use multiplication and division knowledge to convert improper fractions to mixed numbers and vice versa.
- Multiply a fraction by a whole number (integer).
- consolidate fractions of amounts from year 4 using bar models and pictures as well as numerically.

Written Calculations

- multiply numbers up to 4 digits by a one- or two-digit number using grid method then expanded form
- divide numbers up to 4 digits by a one-digit number using the formal written method of short division (bus stop) and interpret remainders appropriately for the context.
- Long division using a number line and chunking then chunking but writing this vertically.

Properties of Numbers - Multiples, Factors, Primes, Square and Cube numbers

- identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- establish whether a number up to 100 is prime and recall prime numbers up to 19.
- recognise and use square numbers and cube numbers, and the notation for squared (2) and cubed (3.)

Inverse Operations, Estimating and Checking

- estimate and use inverse operations to check answers to a calculation

Problem Solving

- solve problems involving multiplication and division including using their knowledge offactors and multiples, squares and cubes.
- solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign.
- solve problems involving multiplication and division, including scaling by simple fractions and problemsinvolvingsimple exchange rates.
- Solve area problems of compound rectangular shapes.

MULTIPLICATION - Year 5

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)
Factors, Squares, Cubes and Primes:

Always, Sometimes, Never

A square number has an even number of factors.

Dora says all prime numbers have to be odd.

Her friend Amir says that means all odd numbers are prime, so 9,27 and 45 are prime numbers.

Explain Amir's and Dora's mistakes and correct them.

Fill in the Venn diagram to show the factors of 20 and 24
Do you agree?
Explain your answer

Where are the common factors of 20 and 24 ?
Use a Venn diagram to show the common factors of 9 and 15

Children use mental strategies to find products and missing numbers.
Children practise using grid method for multiplying two and three digit numbers by one number as Year 4

Short Multiplication:

Use grid method to lead on to short multiplication.
Children need to see the continuity in method and appreciate its efficiency.
$327 \times 4=$
Estimation: $300 \times 4=1200$
Short multiplication for multiplying by a single digit

x	300	20	7
4	1200	80	28

Leading on to 4 digit numbers:
$3652 \times 8=$
Estimation: $4000 \times 8=32,000$

Long Multiplication: Use the grid method to consolidate from year 4. Then move into the expanded form.
815×34 We partition 815 into 800 and 10 and 5 and put it in a table. We partition 34 into 30 and 4 and put it in the table.

x	800	10	5
30	24000	300	150
4	3200	40	20

Multiply the numbers in the grid one by one, then add all the numbers to make 27,710 .

$$
\begin{array}{r}
815 \\
\times \quad 34 \\
\hline 24000(800 \times 30) \\
3200(800 \times 4) \\
3 \quad 300(10 \times 30) \\
+\quad 40(10 \times 4) \\
150(5 \times 30) \\
20(5 \times 4)
\end{array}
$$

$$
0
$$

$$
\square 111111111
$$

Do you agree?

DIVISION - Year 5

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)

Children use short division (bus stop method) to calculate 2 and 3 digit numbers with1 digit number

Children see the link between chunking on a number line with short division:
$96 \div 3=32$

Short division: Limit numbers to
NO remainders in the answer OR carried
(each digit must be a multiple of the divisor).

Long Division: Chunking \&
subtraction

Find Fractions of Amounts:

Find $\frac{2}{7}$ of 42

Use this method to find:
$\frac{3}{8}$ of 56
$\frac{5}{6}$ of 480
$\frac{4}{9}$ of 81 m
$\frac{7}{16}$ of a class are boys.
There are 18 girls in the class.
Write a problem that matches the bar model.

What other questions could you ask from this model?

Find the area of each colour in the rectangle.

What would happen if one of the red or green rectangles was changed to a blue?

MULTIPLICATION AND DIVISION Appendix 8
 Year 6

Multiplication and Division facts

- As Year 5

Mental Calculations

- perform mental calculations, including with mixed operations and large numbers.
- associate a fraction with division and calculate decimal fraction equivalents(e.g. 0.375) for a simple fraction(e.g.3/8)
- Relate multiplication \& division to ratio.
- Multiply fractions by an integer.
- Multiply fractions by fractions.
- Divide fractions by an integer.

Written Calculations

- multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication
- divide numbers up to 4-digits by a one-digit whole number using the formal written method of short division where appropriate for the context
- divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context.
- use written division methods in cases where the answer has up to two decimal places.

Properties of Numbers - Multiples, Factors, Primes, Square and Cube numbers

- identify common factors, the highest common factor, common multiples, the lowest common multiples, prime numbers and prime factors.
- use common factors to simplify fractions; use common multiples to express fractions in the same denomination.
- calculate, estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed (cm3) and cubic metres (m3), and extending to other units such as mm3 and km3.
- Convert between metric and metric measurements \& between metric \& imperial measurements.

Order of Operations

- use their knowledge of the order of operations to carry out calculations involving the four operations (BODMAS).

Inverse Operations, Estimating and Checking

- use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.

Problem Solving

- solve multi-step problems involvingaddition, subtraction, multiplication and division
- solve problems involving similar shapes where the scale factor is known or can be found.
- Find the area of compound shapes made from rectangles and triangles.

MULTIPLICATION - Year 6

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)
Children practise short multiplication as in Year 5.
Use grid multiplication to introduce long multiplication:
$18 \times 13=$
Estimation: $20 \times 10=200$
Introduce long multiplication for multiplying by 2 digits

$1234 \times 16=$
Estimation: $1200 \times 20=24,000$

Use short and long multiplication to multiply numbers with up to $\mathbf{2}$ decimal places:
$3.19 \times 8=$
Estimation: $3 \times 8=24$

Use and apply this method in the context of money and measures as well.

The shape is made of three identical triangles.

What is the area of the shape?

Calculate the volume of the shape.

A tube of toothpaste holds 75 ml .

How many tubes can be filled using 3 litres of toothpaste?

There are __ mm in one centimetre. There are __cm in one metre. There are __m in one kilometre. Use these facts to complete the table.

$\mathbf{m m}$	$\mathbf{c m}$	\mathbf{m}	$\mathbf{k m}$
44,000			
	2,780		
		15.5	
			1.75

Annie is calculating the area of a right angled triangle.

Do you agree with Annie? Explain your answer.

Fractions:

How many ways can you complete the missing digits?

$$
\begin{aligned}
x & \frac{3}{12} \\
& =\frac{6}{2}
\end{aligned}
$$

Find the area of the shaded part of the shape.

Eva and Amir both work on a homework project.

$$
\begin{aligned}
& \text { I spent } 4 \frac{1}{4} \text { hours a week } \\
& \text { for } 4 \text { weeks doing my } \\
& \text { project. }
\end{aligned}
$$

 project.

Who spent the most time on their project?

Explain your reasoning.

DIVISION - Year 6

Children continue to learn from concrete resources and other models and images to develop conceptual understanding. (See Years 1 and 2)
Children practise short division as in Year 5.

Extend short division to include converting remainders to decimals (only to those who are ready):

Introduce long division to those who are ready:
$432 \div 15$ becomes

1 | | | | 2 | 8 |
| :--- | :--- | :--- | :--- | :--- |
| | 5 | 3 | 8 | |
| | 4 | 3 | 2 | 0 |
| 3 | 0 | \downarrow | | |
| | 1 | 3 | 2 | |
| | 1 | 2 | 0 | \downarrow |
| | | 1 | 2 | 0 |
| | | 1 | 2 | 0 |

$\begin{array}{lll}0 & 3 & 6\end{array}$
$0812 \cdot 125$
$8 \longdiv { 6 ^ { 6 } 4 9 ^ { \prime } 7 \cdot 0 ^ { 2 } } 0 ^ { 4 } 0$

Use the clues to work out the number.

- It is greater than 10
- It is an odd number
- It is not a prime number
- It is less than 25
- It is a factor of 60

Fractions: Dividing a Fraction by an integer.
Tommy says,

Do you agree?
Explain why.

Calculate the missing fractions and integers.

$$
\square \div 4=\frac{7}{36}
$$

$$
\frac{3}{20} \div \square=\frac{3}{80}
$$

$$
\square \div \frac{\square}{5}
$$

Is there more than one possibility?

Ratio:

Eva has a packet of sweets.
For every 3 red sweets there are 5 green sweets.
If there are 32 sweets in the packet in total, how many of each colour are there?
You can use a bar model to help you.

Teddy has two packets of sweets.

In the first packet, for every one strawberry sweet there are two orange sweets.

In the second packet, for every three orange sweets there are two strawberry sweets.

Each packet contains 15 sweets in total.
Which packet has more strawberry sweets and by how many?

