Glebe

Primary School

Number Extras

Factors: All the numbers that divide exactly into that number.
Factors of 8 are 2481
PRIME Numbers: Numbers that only have 2 factors- 1 and the number itself.
Eg 3, 5,7,9,
SQUARE Numbers: A number multiplied by itself: 3 squared : 3x3=9

A helpful little book of SATS hints
Name:

Key Advice: Learn These

Problem Solving:

1. Underline key words

2. Decide which operation:

$$
+- \text { x or :- }
$$

3.Estimate
4. Calculate
5. Check
6. Answer with correct unit.

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	2	4	6	8	10	12	14	16	18	20
$\mathbf{3}$	3	6	9	12	15	18	21	24	27	30
$\mathbf{4}$	4	8	12	16	20	24	28	32	36	40
$\mathbf{5}$	5	10	15	20	25	30	35	40	45	50
$\mathbf{6}$	6	12	18	24	30	36	42	48	54	60
$\mathbf{7}$	7	14	21	28	35	42	49	54	63	70
$\mathbf{8}$	8	16	24	32	40	48	56	64	72	80
$\mathbf{9}$	9	18	27	36	45	54	63	72	81	90
$\mathbf{1 0}$	10	20	30	40	50	60	70	80	90	100

KNOW YOUR TABLES: A daily session to keep sharp will make you a confident mathematician.

Learn your number facts e.g. pairs of numbers that add to 10,100 , and 1000
How to add:

1. Partitioning the number into hundreds, tens and units.

Add the tens first, starting with the larger number and then the units:

$$
\begin{aligned}
36+27 & =30+6 \text { and } 20+7 \\
& =30+20 \text { and } 7+6 \\
& =50 \text { and } 13 \text { (could partition } 13 \text { into } 10 \text { and } 3) \\
& =63
\end{aligned}
$$

Use number lines to record and to help work out these calculations e.g. $76+47$

2. Vertical layout:
A \square
$+76$
B 368
$\begin{array}{r}+495 \\ \hline\end{array}$
110 (70+40)
13 (7+6)
123

$$
700(300+400)
$$

$$
150(90+60)
$$

$$
\frac{13(8+5)}{863}
$$

In examples C and D, start to add the units first, followed by the tens and hundreds.
C
47

$$
\begin{gathered}
13(7+6) \\
110(40+70)
\end{gathered}
$$

D 368
$+495$

$$
13(8+5)
$$

$$
150 \text { (90+60) }
$$

$$
700(300+400)
$$

863
4. Vertical layout, contracting the working to a compact efficient form:

| 47 |
| ---: | ---: |
| +76 |
| 123 | | 368 |
| ---: |
| +495 |
| 11 | | 863 |
| :--- |
| 11 |

5. Now try with larger numbers and decimals

Subtraction

1. Subtraction as taking away (e.g. to take 2 from 7 , use 7 objects, take 2 away and count how many are left).
2. Counting back (e.g. start at 7 using a number line count back 2 hops).

Learn your number facts: e.g. learning the corresponding subtractions to addition pairs of numbers e.g. If you learn that 5 add $3=8$, you also know that $8-5$ equals 3 and $8-3$ equals 5 .
3. Mental method - counting up (complementary addition):
E.g. $76-47$
$+3$

$$
+20
$$

+6

$$
3+20+6=29
$$

$$
842-276
$$

$$
24+500+42=\mathbf{5 6 6}
$$

4. Vertical layout of complementary addition

For example:

$$
\begin{array}{r}
842 \\
-276 \\
\hline 4(280) \\
20(300) \\
+542(842)
\end{array}
$$

566
Count on from 276 and add on 4 to get to 280 .
Add 20 to get to 300 .
Now add 542 to get to 842 .
Finally add together 4,20 , and 542 to obtain the answer 566 .

Multiplication

You need to :
1.Count in steps
2. Use doubling and halving
3. Use an array: eg

X	50	6	
20	1000	120	1120
7	350	42	392
			1512

6.Long Multiplication method

469
$\times 32$ $\underset{1938}{ }$
14070
4.Mental method using partitioning to multiply a multiple of 10 by a
single digit number.
15008

$$
\begin{aligned}
& 4 \times 2=8 \\
& 2 \times 4=8
\end{aligned}
$$

4 lots of 2 , and 2 lots of 4.

Know your tables.

$$
38 \times 7=(30 \times 7)+(8 \times 7)
$$

Partition 38 into 30 and 8 . They would then multiply 30 by 7 , and 8 by 7 . Finally add the two answers.
5. Grid layout

Larger number grids:

Look carefully at the sizes
Fraction Wall of the fractions

1. Canil da ditinny lead?

2. Do I need to make a jotting or draw a number line?

3. Do l need

a pencil and paper method?

Should
1 usee (Calculator

Whatever method feels safe to you is OK.
Calculations which are good on a number line:

Addition

Subtraction Multiplication Division AND

TIME

Don't forget temperature on a vertical line

Useful measurements:

Liquid:

I Litre $=1000$ millilitres
$1 \mathrm{~L}=1000 \mathrm{ml}$
Mass
1 Kilogram=1000grams
$1 \mathrm{~kg}=1000 \mathrm{~g}$
$0.5 \mathrm{~kg}==1 / 2 \mathrm{~kg}$
$0.25 \mathrm{~kg}=1 / 4 \mathrm{~kg}$
$0.75 \mathrm{~kg}=3 / 4 \mathrm{~kg}$

Length

kilometre $=1000$ metres
1 metre $=100$ centimetres
$10 \mathrm{~cm}=100 \mathrm{~mm}$
$1 \mathrm{~cm}=10 \mathrm{~mm}$

Time

Useful Maths Language

Angles
One year $=365$ days
One leap year 366 days
30 days hath September April June and November All the rest have 31
Excepting 28 in February
And 29 in a leap year.
12 months in a year
A fortnight is 2 weeks Seven days in a week 24 hours in a day
60 minutes in an hour
60 seconds in a minute

Area

Average
Calculate
Capacity

Century
angles are formed when 2 straight lines meet. Different sized angles have different names.

Acute angles are angles smaller than 90 degrees

Right angles are 90 degrees
Obtuse angles are larger than 90 degrees but smaller than 180 degrees.

Reflex angles are larger than 180 degrees but smaller than 360 degrees.
the amount of surface space in a shape. Measured in squared centimetres or cm^{2}
is the same as mean
to work out
the amount that something can hold. It can be measured in litres, millilitres or in cubic centimetres e.g. $100 \mathrm{~cm}^{3}$
a hundred, a century in time is 100 years

Decade Ten years
Degree the unit of measurement we use for measuring angles and temperatures

Difference to find the difference between 2 numbers, you need to take the smaller number away from the larger one. E.g. the difference between 10 and 4 is 6

Equilateral triangle a triangle with sides of equal lengths and equal angles (60 degrees)

Factors A factor is a whole number which will divide exactly into another whole number. E.g. 3 is a factor of 12

Inverse operation If you have a sum with a missing gap, you can use the inverse operation to solve it. E.g. + and - are the inverse of each other and x and - are the inverse of each other
To solve $124+\square=200$ you could turn it to $200-124=76$

Mean
To find the mean you must have a set of results. You then need to find the total of the results and divide it by the number of results you have,
e.g. Here are a set of test marks

Paul 22, Sally 26,Tim 31,David 33
To find the mean of these scores add them all together (112) and then divide by 4 (28) so the mean score is 28

Median

Mode

Multiple

When the data is arranged in order of size the median is the one in the middle.

Is the number which appears most frequently in a collection of data.

Multiples are whole numbers that a larger number can be made of by adding lots of the smaller number together. E.g. 12 is a multiple of 3

Percentages $\%$ means out of 100 so 20% is the same as $20 / 100$. To find 20% of 50 you divide by 100 and times by 20

Prime numbers are numbers which will divide exactly only by themselves and 1. These are the prime numbers to 30 12357111317192329.

Product	The answer when something has been multiplied. e.g. the product of 3 and 4 is
	12

Sum To find the sum of a group of numbers, you add the numbers together.

Do you know what these mean?

units	tens	
hundreds thousands		
greater than		
less than	too few	
too many	round up	
round down		
roughly		
approximately		
add	plus	more
increase	decrease	
total	subtract	
minus	take away	
difference between		
double	halve	
lots of	groups of	
times	multiply	share
divide	remainder	
product	factor	
repeated addition		

Finally: Our advice for Sats week is:
Prepare by studying
Sleep well and soundly

Eat well and frequently

What operations are you going to use?
What method are you going to use? What equipment will you need?
What questions will you need to ask? How are you going to record your answers? Can you estimate or predict the answer?

Division:

Understanding division as grouping, sharing or repeated subtraction.

1.Grouping
 $12 \div 3$

How many groups of 3 are there in 12?
Answer $=4$
2. Sharing
$12 \div 3$
What is 12 'shared between' 3?

-...

3. Beginning to use Repeated Subtraction

$12 \div 3$

12-3-3-3-3=0
Understanding division as grouping, sharing or repeated subtraction.
Using the \div and $=$ signs, recording horizontally $12 \div 3=4$
4. Introducing Number Line Division
$12 \div 3$

Answer $=4$
Using Number Line Division
How many 6s are there in 96? $96 \div 6$
$10 \times 6 \quad 5 \times 6 \quad 1 \times 6$

So $\overrightarrow{96} \div 6=16$
5. Beginning to use Chunking Method
$192 \div 8$
8192
80 (10 lots of 8)
+80 (10 lots of 8)
160
+24 (3 lots of 8)
184

+8
192

Answer $=24$ (lots of8)
6. Using Number Line Division, with remainat
$196 \div 6$

$\overrightarrow{\text { Answer }}=32$ r 4
6. If ready, present in Standard Format
$196 \div 6$
$\left\lvert\, \frac{16}{196}\right.$
160 (20 lots of 8)
$+\underline{32}$ (6 lots of 6)
192
Answer = 24 r6
OR 24 6/8 OR $24 \frac{3}{4}$
Using Number Line Division with remainders as decimals when appropriate 194 - 8
7. If ready, present in Standard Format with a focus on language.

17 r 19
$3 1 \longdiv { 5 4 6 }$
$\frac{31}{236}$
236

Pictograms

Our Primary School held a vote to decide on a name for their new school mascot.

Name	Tally	Total
Joey		45
Fuzzy	HY HK	10
Oggy	HH HH HH	
Dina	HK HX HK HK	

1. Complete the table.
2. Complete this pictogram

Name			Symbol	
Joeey	\square	\square	\square	
Fuzzy		\square		
Oggy	\square	\square	\square	
Dina				

3. What is the value of

Remember you must look at the key to find out how much is represented by each symbol in the pictogram

Mean, Median, Mode and Range

Mean
The mean is when all the numbers are added then divided by how many numbers there were eg:

The mean of 12,17 , and 15 is

$$
12+19+15=36
$$

Mean = 36 divided by 3=12

Median

The median is the middle or an ordered set of numbers eg
$1,3,6,13,21,23,26$ The median is 13

Mode

The group which is largest is the mode. If for examples, car colours are being compared and this information is collected:

White 12; Black 14; Red 12; Blue 9; Green 11
Then the mode is black because more black cars were owned than any other colour.

The range is the difference between the highest and the lowest value of the thing being measured. e.g. if the most number of times a week a child reads to a parent is 7 , and the least is 1 , the range is $6(7-1)$.

Angles

Remember - small angles (less than 90 degrees are called ACUTE angles (a cute angle)

- angles bigger than (90 degerees, but less than 180 degrees are called OBTUSE angles.

Properties of Triangles

Isosceles triaı angles.

Scalene Trian
I sides and no equal angles. One angle is larger than 90 degrees

Equilateral Triangles have 3 equal sides and 3 equal angles.

Shape Vocabulary

2 Dimensional shapes:

polygons - closed,
flat, shapes with more than
3 straight sides
circle oval triangles:

[3 sides] equilateral isosceles right-angle scalene quadrilaterals [4 sides] square oblong rectangle parallelogram
 rhombus trapezium chevron pentagon 5 hexagon 6 heptagon 7 octagon 8 nonagon 9 decagon 10 dodecagon 12

Place Value

1. Circle the number which is nearest in value to $\mathbf{7 5 0}$.
699
2. Write these numbers in order of size.

| 456 | 299 | 901 |
| :--- | :--- | :--- | :--- |

575

3. Here are three number cards.

Write down the smallest number you can make using the three cards
\qquad

Write down the number closest to 754 you can make using the three cards.
\qquad
4. Which of these numbers is nearest to $\mathbf{4 0 0}$? $310 \quad 530 \quad 460$ 420
5. Here are three digits.

Use all the digits $\mathbf{6 , 1}$ and $\mathbf{3}$ to write a number that is between 100 and 140

Use all the digits 6, $\mathbf{1}$ and $\mathbf{3}$ to complete this subtraction. 0

$$
\square=\square=25
$$

Ordering Decimals:

0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.19	0.2
0.21	0.22	0.23	0.24	0.25	0.26	0.27	0.28	0.29	0.3
0.31	0.32	0.33	0.34	0.35	0.36	0.37	0.38	0.39	0.4
0.41	0.42	0.43	0.44	0.45	0.46	0.47	0.48	0.49	0.5
0.51	0.52	0.53	0.54	0.55	0.56	0.57	0.58	0.59	0.6
0.61	0.62	0.63	0.64	0.65	0.66	0.67	0.68	0.69	0.7
0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.8
0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	0.9
0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1

6. Circle the two numbers which add up to 1
0
$0.1 \quad 0.65$
0.99
0.45
0.35

Remember the Decimal Point NEVER Moves

Here are four number cards.

2

Use all the number cards to make an addition
The answer must be MORE that 100
O

To multiply by 10 the numbers move one place the left: Don't forget the place holders

To Divide by 10 the numbers move one place to the right

Negative Numbers

Think Number Line

Measuring Shape

Perimeter:

Take a walk around the shape and add up how far you go.

Or If it is a quadrilateral shape:
$\mathrm{P}=2 \mathrm{l}+2 \mathrm{~b}$

Area:

How much space does the shape take up?
Count the squares. Or
$\mathrm{A}=2(\mathrm{l}+\mathrm{b})$
Symmetry: The same both sides
Rotational Symmetry:
A shape turned through 90 degrees, 180 degrees or 270 degrees.

Tessellation:
Shapes which are the same and fit together with no gaps.

Transformations:

- Reflection
- Transformation, whole shape slides
- Rotation: Shape turns around central point.

